ArangoDB v3.4 reached End of Life (EOL) and is no longer supported.
This documentation is outdated. Please see the most recent version here: Latest Docs
Which Index to use when
ArangoDB automatically indexes the _key
attribute in each collection. There
is no need to index this attribute separately. Please note that a document’s
_id
attribute is derived from the _key
attribute, and is thus implicitly
indexed, too.
ArangoDB will also automatically create an index on _from
and _to
in any
edge collection, meaning incoming and outgoing connections can be determined
efficiently.
Index types
Users can define additional indexes on one or multiple document attributes. Several different index types are provided by ArangoDB. These indexes have different usage scenarios:
-
hash index: provides quick access to individual documents if (and only if) all indexed attributes are provided in the search query. The index will only be used for equality comparisons. It does not support range queries and cannot be used for sorting.
The hash index is a good candidate if all or most queries on the indexed attribute(s) are equality comparisons. The unique hash index provides an amortized complexity of O(1) for insert, update, remove and lookup operations. The non-unique hash index provides O(1) inserts, updates and removes, and will allow looking up documents by index value with amortized O(n) complexity, with n being the number of documents with that index value.
A non-unique hash index on an optional document attribute should be declared sparse so that it will not index documents for which the index attribute is not set.
-
skiplist index: skiplists keep the indexed values in an order, so they can be used for equality lookups, range queries and for sorting. For high selectivity attributes, skiplist indexes will have a higher overhead than hash indexes. For low selectivity attributes, skiplist indexes will be more efficient than non-unique hash indexes.
Additionally, skiplist indexes allow more use cases (e.g. range queries, sorting) than hash indexes. Furthermore, they can be used for lookups based on a leftmost prefix of the index attributes.
-
persistent index: a persistent index behaves much like the sorted skiplist index, except that all index values are persisted on disk and do not need to be rebuilt in memory when the server is restarted or the indexed collection is reloaded. The operations in a persistent index have logarithmic complexity, but operations have may have a higher constant factor than the operations in a skiplist index, because the persistent index may need to make extra roundtrips to the primary index to fetch the actual documents.
A persistent index can be used for equality lookups, range queries and for sorting. For high selectivity attributes, persistent indexes will have a higher overhead than skiplist or hash indexes.
Persistent indexes allow more use cases (e.g. range queries, sorting) than hash indexes. Furthermore, they can be used for lookups based on a leftmost prefix of the index attributes. In contrast to the in-memory skiplist indexes, persistent indexes do not need to be rebuilt in-memory so they don’t influence the loading time of collections as other in-memory indexes do.
-
geo index: the geo index provided by ArangoDB allows searching for documents within a radius around a two-dimensional earth coordinate (point), or to find documents with are closest to a point. Document coordinates can either be specified in two different document attributes or in a single attribute, e.g.
{ "latitude": 50.9406645, "longitude": 6.9599115 }
or
{ "coords": [ 50.9406645, 6.9599115 ] }
Geo indexes will be invoked via special functions or AQL optimization. The optimization can be triggered when a collection with geo index is enumerated and a SORT or FILTER statement is used in conjunction with the distance function.
-
fulltext index: a fulltext index can be used to index all words contained in a specific attribute of all documents in a collection. Only words with a (specifiable) minimum length are indexed. Word tokenization is done using the word boundary analysis provided by libicu, which is taking into account the selected language provided at server start.
The index supports complete match queries (full words) and prefix queries. Fulltext indexes will only be invoked via special functions.
Sparse vs. non-sparse indexes
Hash indexes and skiplist indexes can optionally be created sparse. A sparse index
does not contain documents for which at least one of the index attribute is not set
or contains a value of null
.
As such documents are excluded from sparse indexes, they may contain fewer documents than their non-sparse counterparts. This enables faster indexing and can lead to reduced memory usage in case the indexed attribute does occur only in some, but not all documents of the collection. Sparse indexes will also reduce the number of collisions in non-unique hash indexes in case non-existing or optional attributes are indexed.
In order to create a sparse index, an object with the attribute sparse
can be added to
the index creation commands:
db.collection.ensureIndex({ type: "hash", fields: [ "attributeName" ], sparse: true });
db.collection.ensureIndex({ type: "hash", fields: [ "attributeName1", "attributeName2" ], sparse: true });
db.collection.ensureIndex({ type: "hash", fields: [ "attributeName" ], unique: true, sparse: true });
db.collection.ensureIndex({ type: "hash", fields: [ "attributeName1", "attributeName2" ], unique: true, sparse: true });
db.collection.ensureIndex({ type: "skiplist", fields: [ "attributeName" ], sparse: true });
db.collection.ensureIndex({ type: "skiplist", fields: [ "attributeName1", "attributeName2" ], sparse: true });
db.collection.ensureIndex({ type: "skiplist", fields: [ "attributeName" ], unique: true, sparse: true });
db.collection.ensureIndex({ type: "skiplist", fields: [ "attributeName1", "attributeName2" ], unique: true, sparse: true });
When not explicitly set, the sparse
attribute defaults to false
for new indexes.
Other indexes than hash and skiplist do not support sparsity.
As sparse indexes may exclude some documents from the collection, they cannot be used for
all types of queries. Sparse hash indexes cannot be used to find documents for which at
least one of the indexed attributes has a value of null
. For example, the following AQL
query cannot use a sparse index, even if one was created on attribute attr
:
FOR doc In collection
FILTER doc.attr == null
RETURN doc
If the lookup value is non-constant, a sparse index may or may not be used, depending on
the other types of conditions in the query. If the optimizer can safely determine that
the lookup value cannot be null
, a sparse index may be used. When uncertain, the optimizer
will not make use of a sparse index in a query in order to produce correct results.
For example, the following queries cannot use a sparse index on attr
because the optimizer
will not know beforehand whether the values which are compared to doc.attr
will include null
:
FOR doc In collection
FILTER doc.attr == SOME_FUNCTION(...)
RETURN doc
FOR other IN otherCollection
FOR doc In collection
FILTER doc.attr == other.attr
RETURN doc
Sparse skiplist indexes can be used for sorting if the optimizer can safely detect that the
index range does not include null
for any of the index attributes.
Note that if you intend to use joins it may be clever
to use non-sparsity and maybe even uniqueness for that attribute, else all items containing
the null
value will match against each other and thus produce large results.